Global optimization for non-convex programs via convex proximal point method

نویسندگان

چکیده

In this study, a convex proximal point algorithm (CPPA) is considered for solving constrained non-convex problems, and new theoretical results are proposed. It proved that every cluster of CPPA stationary point, the initial key to global optimization. Several sufficient conditions selection provided find minimum. Motivated by these results, numerical experiments were conducted on quadratic programming problems with constraints. The performance CPPAs was compared, randomly selected or obtained through Lagrangian dual problem. demonstrate quality computed much better than random in terms objective function value.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal Point Nonlinear Rescaling Method for Convex Optimization

Nonlinear rescaling (NR) methods alternate finding an unconstrained minimizer of the Lagrangian for the equivalent problem in the primal space (which is an infinite procedure) with Lagrange multipliers update. We introduce and study a proximal point nonlinear rescaling (PPNR) method that preserves convergence and retains a linear convergence rate of the original NR method and at the same time d...

متن کامل

Convex Optimization For Non-Convex Problems via Column Generation

We apply column generation to approximating complex structured objects via a set of primitive structured objects under either the cross entropy or L2 loss. We use L1 regularization to encourage the use of few structured primitive objects. We attack approximation using convex optimization over an infinite number of variables each corresponding to a primitive structured object that are generated ...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Augmented Lagrangian Methods and Proximal Point Methods for Convex Optimization

We present a review of the classical proximal point method for nding zeroes of maximal monotone operators, and its application to augmented Lagrangian methods, including a rather complete convergence analysis. Next we discuss the generalized proximal point methods, either with Bregman distances or -divergences, which in turn give raise to a family of generalized augmented Lagrangians, as smooth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Industrial and Management Optimization

سال: 2023

ISSN: ['1547-5816', '1553-166X']

DOI: https://doi.org/10.3934/jimo.2022142